Fistuloclysis (distal limb feeding)

Mia Small
Nurse Consultant

Diane Brundrett
Specialist Dietitian
Overview

- Define what is meant by fistuloclysis (distal limb feeding)
- Consider the supporting evidence
- Describe the practicalities of undertaking it
- Present some case histories illustrating the benefits
Fistuloclysis/distal limb feeding

- The infusion of nutrients via defunctioned bowel
 - Fistula, loop stoma, double barrelled stoma, mucous fistula
 - Sole or supplemental nutrition support
- Enteral formula &/or reinfusion of ostomy effluent (chyme)
 - Bolus or continuous delivery
Potential benefits

- Increased absorption
 - Intestinal adaptation
- Prevent atrophy of distal intestine
 - Trigger release of enteroendocrine hormones, including GLP-2
- Potential for improvement in LFT’s
 - Prevent cholestasis
 - Diversion colitis
- Reduction in upper fistula output
 - Inhibition of upper GI secretions
- Possible reduction in PN requirements

Complications

- GI related
 - Diarrhoea
 - Nausea
 - Vomiting
 - Abdominal pain

- Tube related
 - Tube falls out
 - Tube blockage
 - Tube migration

Evidence base

- **Initial case series**
 - 12 patients
 - Minimum of 75cm of healthy small bowel
 - Standard polymeric feed
 - 12-16 hours
 - Low residue diet
 - PN until 90ml/hour tolerated
 - 11/12 patients off PN

- **Subsequent findings**
 - 69 patients
 - Median length of distal bowel 120cm
 - 51 patients successfully weaned off PN
 - 45 had successful reconstructive surgery

Methods of feeding

Continuous

Bolus
Which method?

Continuous
Method described in the literature
May permit reduction in or independence from PN
Can be difficult & time consuming
Issues with compliance & leakage

Bolus
No published reports to date
Unlikely to allow a significant reduction in PN
Easy
Increased compliance & reduced leakage

Aims of treatment & patient preference
What is going to go down the tube?

- **Feed**
 - Farrer et al (2014) ESPEN extract

- **Chyme**

- **Feed & Chyme**
 - Coetzee et al (2014) Colorectal Disease
 - Wu et al (2014) Gastroenterology Research & Practice
Which feed?

- No comparative studies to date
- Reports of polymeric, semi elemental & elemental being tolerated
 - Polymeric
 - 1kcal/ml 160ml/hour
 - 1.5 kcal/ml 70ml/hour
 - Peptide
 - 100ml/hour
- May be beneficial to select MCT feeds if feeding into the colon

>75cm SB
Full EN

- Colon
 - MCT based
 - Peptamen
 - Peptisorb
 - Vital 1.5
 - Nutrison MCT

- No Colon
 - Peptide
 - Perative
 - Peptisorb

<75cm of SB
Trophic

- Colon
 - MCT based
 - Peptamen
 - Liquigen
 - MCT Oil
 - Vital 1.5

- No Colon
 - Peptide
 - Perative
 - Peptisorb
Reinfusion

- Chyme (succus entericus)
 - Semi fluid mass of partly digested food
- Contains many enzymes
 - Salivary amylase, pepsin, pancreatic enzymes
- Bile
- Growth factors
 - EGF, HGF, KGF
- May promote nutritional absorption & adaptation
 - Can be given on its own or mixed with enteral formula

Would you do it?
Reinfusion of chyme

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Before CR</th>
<th>During CR</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal absorptive function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intestinal wet weight output (ml/day)</td>
<td>2384±969</td>
<td>216±242</td>
<td><0.0001</td>
</tr>
<tr>
<td>Net digestive absorption nitrogen (%)</td>
<td>44.5±12.5</td>
<td>84.0±12.2</td>
<td><0.0001</td>
</tr>
<tr>
<td>Net digestive absorption fat (%)</td>
<td>47.8±25.0</td>
<td>89.3±11.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>Parenteral nutrition delivery (n) (%)</td>
<td>17 (65)</td>
<td>2 (8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Nutritional status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>20.6±3.8</td>
<td>21.5±3.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Nutrition Risk Index</td>
<td>79.7±15.4</td>
<td>90.9±12.9</td>
<td><0.0001</td>
</tr>
<tr>
<td>Serum albumin (g/dL)</td>
<td>2.8±0.9</td>
<td>3.5±0.9</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

n=26

Monitoring

Same as for any enteral feeding
When should we do it?

- When there is downstream bowel
- When it is safe to use the bowel
 - Always have a distal contrast study first
- There is a clear goal
 - Nutrition support or trophic
 - Defined period or long term
- When the patient can cope with it physically & psychologically
 - Help in community limited
Tube selection

- **Balloon gastrostomy**
 - Sizes from 14-24 Fr in literature

- **Gastrojejunostomy**
 - Longer than balloon gastrostomy
 - Expensive

- **Foley catheter**
 - Risk of inward migration
 - Not licensed for enteral use

- **Fine bore feeding tube**
 - For intermittent use only as no external fixator

Tubes and any equipment used must be ISO (ENFIT) compliant
Appliance selection

- Involve stoma team
- Depends on distal limb presentation
 - Separate from output stoma
 - Within laparostomy
- Is tube remaining in situ
- Is feed continuous or bolus
- Need to consider
 - Ease of application for patient
 - Availability of product & support in community
Case study 1

- 56 year old lady
 - Roux en y bariatric surgery 2011
 - Ischaemic bowel 2014
- Complicated anatomy
 - Oesophageal stump not connected to the stomach
 - Segment of stomach to duodenostomy
 - 2 metres of floating bowel jejunostomy to ileostomy (not working)
- TDS bolus of 100mls of Fortisip™ Compact via jejunostomy
 - Ileostomy started functioning
Case study 2

- 64 year old male
 - 2000 Sigmoid Ca, Ileostomy
 - 2012 infarcted bowel
 - Jejunostomy 60-70cm
 - Mucous fistula

- Distal end of bowel not used for 14 years
 - BD bolus feeding 150 mls Vital 1.5
 - Bowels now opening
 - Reduction on nights on PN
 - Radiological improvement noted
Conclusion

- Fistuloclysis feeding should be considered in patients with downstream bowel
 - Tailored to the needs of the patient
- Patient participation & MDT involvement essential
- More research is required to optimise efficacy
References

- Bosaeus et al 1986 Scand J Gastroenterol 21:891
- Spiller 1987 Gut 28:681
- Polk & Schwab 2012 World J Surg 36:524-533
- Teubner A et al. BJS 2004;91:625
- Woolf et al 1983 Gastroenterology 84:823
- McIntyre et al 1986 Gastroenterology 91:25
- Messing et al 1991 Gastroenterology 100:1502
- Estivariz et al 2008 Nutrition 24:330