

Aseptic Technique: The Emperor's New Clothes?

Mia Small

Nurse Consultant Nutrition & Intestinal Failure

St Mark's Hospital

mia.small@nhs.net

Overview

- Discuss what is meant by an aseptic technique & how it should be performed
- Present the evidence base surrounding the key aspects of central venous catheter care
- Review how the efficacy of the technique can be demonstrated

What is an aseptic technique?

Asepsis

- The absence of pathogenic organisms or their toxins from the blood or tissues
- Difficult to achieve
- Pathogenic organisms are present in many different areas of the body
- Can be harmful if enter a vulnerable site, for example CVC hub

Aseptic technique

"Necessary infection control measures to prevent pathogenic microorganisms on hands, surfaces or equipment from being introduced into susceptible sites during clinical practice"

Aseptic Non Touch Technique

- Peer reviewed & tested clinical guidelines
 - Basic infection prevention & control principles
- Improve the efficacy of, & standardize, aseptic technique thereby reducing HCAI
- Surgical or standard depending on length & complexity of procedure

Aseptic technique: The evidence base

 No clinical or economic evidence that any one approach is more clinically or costeffective than another

All recommendations are Class D/GPP¹

What technique would you recommend for parenteral nutrition?

Standard

- Technically complicated procedures
- > 20 minutes in length
- Large open key sites
- Large/numerous key parts

Surgical

- Technically uncomplicated procedures
- < 20 minutes in length
- Small key sites
- Minimal key parts

Principles are the same. The main difference is the complexity of the aseptic field & how it is managed

Always wash hands effectively

Never contaminate key parts

Touch non-key parts with confidence

Take effective infection control precautions

Should the technique be standardised?

Current position

- A standardised procedure for home parenteral nutrition is lacking
- Confusing for patients & staff
- Could impact patient outcomes
- Biggest impact on home care nursing
- If we are basing our practice on the same evidence why do these differences exist?

Variation in practice

	Word count	No of sentences	No of steps	Items needed	Frequency of hand washing	Frequency of alcohol rub
Mean± SD	299 ± 114	43 ± 13.4	19 ± 5.3	13 ± 4.3	2 ± 1	2 ± 1.3
Min	67	14 Jakow	ing only by the only	8	1	0
Max	563	76 pital No part	Statical, will	28	5	6
Median	281	St Mark reservation of any off	18	13	2	2

Which elements of central venous catheter care are evidence-based?

Evidence based elements of CVC care

- Hand decontamination*
 - Fendler et al (2002), Pittet et al (2000)
- Disinfectant/method/ time for CVC hubs*
 - Kaler & Chin (2007), Simmons et al (2011)
- 70% IPA port protection*
 - Sweet et al (2012), Wright et al (2013)
- Prefilled syringes
 - Calop et al (2000), Worthington et al (2010)
- Flushing solution*
 - Mitchell et al (2009), Schallom et al (2012)

Disinfectant used

Aspects of catheter care

Aspect of catheter care	Number of procedures (%)
Disinfection time/method/dry time* No disinfection time/method/dry time	3 (8%) 6 (17%)
Flushing solution 0.9% sodium chloride for injection *† 0.9% sodium chloride + heparinised saline Heparinised saline only Prefilled syringe*	21 (60%) 13 (38%) 1 (2%) 21(60%)
Glove type Sterile Non sterile [†] Not specified None Needle-free connector protection Gauze & tape 70% IPA protector*	29 (83%) 2 (6%) 3 (8%) 1 (3%)
Needle-free connector protection Gauze & tape 70% IPA protector*	14 (40%) 13 (93%) 1 (7%)

^{*} Evidence-based

[†] Supported by national practice guidelines

Measuring disinfection time

- 120 raters (40 nurses, 40 non clinical staff &40 doctors) were timed disinfecting the hub of a dummy CVC on 15 consecutive occasions
- 3 sets of instructions
 - Clean thoroughly
 - Clean for 15 secs
 - Clean for 30 secs

	Clean thoroughly (seconds)			Clea	n for 15 seco (seconds)	onds	Clean for 30 seconds (seconds)			
	Nurses	Non clinical	Doctors	Nurses	Non clinical	Doctors	Nurses	Non clinical	Doctors	
Mean	17.2	17.4	22.1	14.9	14.2	15.7	29.1	28.6	31.7	
Min	1.9	2.1	2.9	300,111	4.4	7.2	4.6	10.8	15.9	
Max	72	75.5	89	31.7	40.5	27.6	59.4	49.3	63	
Median	13.8	11.5	16.5	14.9	13.3	15.5	30	27.7	30.2	
Analysis of variance	F=1.3, p=0.27 F=1.4, p=0.25									

There was less variation in disinfection time when raters were given a specific instruction, however most raters were not able to gauge time accurately and consistently suggesting the need for disinfection to be formally timed

70% IPA port protection

- Single use protective cover with 70% isopropyl alcohol foam disc
 - Provides continuous passive disinfection, plus a physical barrier to cross contamination
- Initial studies promising in reducing CRBSI^{1,2}
 - ?if superior to active disinfection
 - ?if equally effective on all brands of needlefree connector
 - ?if all brands equally effective

Results

1.21 - 2.12 per 1000 catheter days, (mean 1.36 median 1.26)

0.23 - 1.18 per 1000 catheter days (mean 0.47 median 0.43)

p<0.001

How can the efficacy of an aseptic

technique be assessed?

Catheter related infection

- Monitoring catheter related infection is an important outcome measure
- Differences in classifying infection
 - Specifically catheter related bloodstream infection (CRBSI) & central line associated bloodstream infection (CLABSI)
- Availability of culturing methods, & whether catheter tips are available for analysis make direct comparison of infection rates difficult

Diagnostic challenges

- Infection should be diagnosed according to current guidelines
 - Grade of evidence: very low¹
- Infection rates vary on which definition used
 - 2.1% 36.8%²
- Blood culture contamination
 - Up to 17% samples contaminated³

Assessing inter rater reliability

- Infection data for a calendar year were reviewed by 24 raters to assess for variation & agreement with original classification of CRBSI, CLABSI & non systemic infection¹
- I2 raters classified the data on 2 occasions (test-retest)²

Results

Analysis of variation between raters was significant CRBSI, F=5.79, p<0.0001, CLABSI F=4.17, p<0.0001, and non systemic F=3.6, p<0.0001

Rater	1	2	3	4	5	6	7	8	9	10	11	12
Answers in agreement	59	49 ⁰	153 CH	50	66	36	57	61	65	67	62	61
% matched answers	75%	62%	67%	63%	83%	46%	72%	77%	82%	85%	78%	77%

Summary & recommendations

- Focus on the principles of asepsis rather than a step by step list of instructions
- Hospitals should incorporate evidence based recommendations into their procedures
- There is a need for a standardised approach to determining catheter related infection